Sorghum- and millet-legume cropping systems

By Victor Clottey, Lydia Wairegi, Andre Bationo, Abdoulaye Mando and Roger Kanton
Sorghum- and millet-legume cropping systems

By Victor Clottey (CAB International (CABI)), Lydia Wairegi (CABI), Andre Bationo, Abdoulaye Mando (International Center for Soil Fertility and Agricultural Development (IFDC)) and Roger Kanton (CSIR-Savanna Agricultural Research Institute)

© CAB International 2014

Please cite this publication as: Clottey et al 2014, Sorghum- and millet-legume cropping guide. Africa Soil Health Consortium, Nairobi.

This publication is licensed under a Creative Commons Attribution 3.0 Unported License.

Creative Commons License

You are free to:

• share — to copy, distribute and transmit the work
• remix — to adapt the work
• to make commercial use of the work.

Under the following conditions:

• Attribution — You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work).

With the understanding that:

• Waiver — Any of the above conditions can be waived if you get permission from the copyright holder.
• Public domain — Where the work or any of its elements is in the public domain under applicable law, that status is in no way affected by the license.
• Other rights — In no way are any of the following rights affected by the license:
• Your fair dealing or fair use rights, or other applicable copyright exceptions and limitations;
• The author’s moral rights;
• Rights other persons may have either in the work itself or in how the work is used, such as publicity or privacy rights.

Notice — For any reuse or distribution, you must make clear to others the license terms of this work (http://creativecommons.org/licenses/by/3.0/).

Limits of liability
Although the authors have used their best efforts to ensure that the contents of this book are correct at the time of printing, it is impossible to cover all situations. The information is distributed on an ‘as is’ basis, without warranty.

Neither the authors nor the publisher shall be liable for any liability, loss of profit, or other damages caused or alleged to have been caused directly or indirectly by following the guidelines in this book.

About the publisher
The Africa Soil Health Consortium (ASHC) mission is to improve the livelihoods of smallholder farmers through adoption of integrated soil fertility management (ISFM) approaches that optimize fertilizer use efficiency and effectiveness.

ASHC books are available at special discounts for bulk purchases. Special editions, foreign language translations and excerpts can also be arranged.

ISBN (paperback): 978-1-78064-554-4
Design by Sarah Twomey
Victor Clottey
CABI-West Africa
CSIR Campus
PO Box CT 8630
Cantonments
Accra
Ghana
Email: v.clottey@cabi.org
www.cabi.org

Lydia Wairegi
CABI
P.O. Box 633-00621
Nairobi
Kenya
ASHC@cabi.org
www.cabi.org/ashc

Andre Bationo
3 Boundary Close off Boundary Road East Legon
PMB KIA 9846, Airport Accra
G3121
Accra
Ghana
ABationo@outlook.com

Abdoulaye Mando
International Center for Soil Fertility and Agricultural Development (IFDC)
144 rue Solayo
Quartier N’KAFU
B.P. 4483
Lomé
Togo
amando@ifdc.org

Roger Kanton
CSIR-Savanna Agricultural Research Institute, Manga Agriculture Station
P.O. Box 46
Bawku
Ghana
ral_kantor@yahoo.co.uk
Acknowledgements

The preparation of this guide was supported by the Bill & Melinda Gates Foundation.

We thank:

Farmers for information and for allowing photographs to be taken on their farms.

Ken Giller (Wageningen University), Andre Bationo (formerly of Alliance for a Green Revolution in Africa (AGRA)), Abdoulaye Mando (IFDC) and CABI for photographs, and Simon Ndonye for the illustrations.

CABI for hosting a write-shop in Ghana at which a large part of this guide was developed.

CABI, AGRA, IFDC and Savannah Agricultural Research Institute (SARI), Ghana, for the time the authors spent writing this guide.
Contents

1. Introduction ... 2
2. Sorghum and millet cropping systems 3
3. Land preparation and planting 8
4. Crop management .. 25
5. What can go wrong? ... 44
6. Economics of sorghum/millet-legume cropping systems 51
7. Look-up tables .. 55
1. Introduction

This cropping guide is one in a series being produced for extension workers by the Africa Soil Health Consortium (ASHC). The series covers banana-coffee, cassava, maize-legumes and rice systems, but this guide is focused on sorghum- and millet-legume systems.

Rural extension workers will find this handbook particularly useful for guiding their clients as they shift from producing sorghum and millet under traditional cropping systems for subsistence to more market-oriented enterprises through sustainable intensification.

The guide aims to provide, in a single publication, all the most important information needed to design and implement effective systems which combine sorghum and/or millet with a range of other crops, especially legumes, either as intercrops or in rotations, but with the primary focus on sorghum and millet.

Although ASHC’s work is focused on the needs of smallholder farmers in Africa, emerging and established commercial farmers will also find the contents relevant and useful.

The ASHC mission is to improve the livelihoods of smallholder farmers through adoption of integrated soil fertility management (ISFM) approaches that optimise fertilizer use efficiency and effectiveness. The overarching framework for the guide is therefore provided by ISFM.
2. Sorghum and millet cropping systems

Sorghum and millet production in Africa mainly occurs in the savannah zones in both hemispheres. Areas of high concentration of sorghum and millet production are in western, central, eastern and southern Africa. The two crops thrive well in areas where maize will not do well under rain-fed conditions: millet thrives well in even more marginal areas than sorghum.

Current average yields of sorghum and millet average about 1 tonne and 0.5 tonnes per hectare, respectively but can easily double with improved management. Maize is grown closer to the equator than sorghum and millet, and millet is grown furthest from the equator.

Sorghum and millet are either grown as sole crops or intercropped with legumes (see examples of these crops in Photo 1). It is not uncommon to see a sorghum-millet intercrop too. The sole crops are common in large-scale production while the intercrops are mainly practiced where land is limited. Millet is more drought tolerant than sorghum (see Table 1). In the drier environments, sorghum can survive best in the lowlands.

The decision to grow any of these crops will depend on whether one can meet the biophysical (e.g. moisture, temperature, soil nutrient levels, weed pressure) and socio-economic (e.g. labour, input costs) requirements of the cropping system. The main requirements are presented in Table 1 while some of these crops’ important characteristics are listed in Table 2.

Apart from the factors and characteristics listed in Tables 1 and 2, household and societal culinary preferences can also influence the choice of crop grown.
Photo 1: Examples of sorghum/millet and legume crops (A) sorghum (photo: Ken Giller) (B) millet (photo: CABI) (C) cowpeas (photo: CABI).
<table>
<thead>
<tr>
<th>Factor</th>
<th>Sorghum</th>
<th>Millet</th>
<th>Maize</th>
<th>Additional notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rainfall (mm/year)</td>
<td>500–1000</td>
<td>350–800</td>
<td>800–1500</td>
<td>Moisture is critical during flowering period. Some sorghum cultivars are well adapted to areas with 1200-1500 mm of rainfall.</td>
</tr>
<tr>
<td>Tolerance to drought</td>
<td>medium</td>
<td>high</td>
<td>low</td>
<td>In the low rainfall areas, sorghum tends to be grown in the low lying lands and millets in the higher areas</td>
</tr>
<tr>
<td>Tolerance to day time temperatures (max 45 °C)</td>
<td>medium</td>
<td>high</td>
<td>low</td>
<td>None can withstand high temperatures for long periods</td>
</tr>
<tr>
<td>Tolerance to low soil fertility</td>
<td>medium</td>
<td>high</td>
<td>low</td>
<td>Sorghum is usually allocated the most fertile land as it is less tolerant to low fertility than millet</td>
</tr>
<tr>
<td>Tolerance to acidity/aluminium toxicity</td>
<td>medium</td>
<td>high</td>
<td>low</td>
<td></td>
</tr>
<tr>
<td>Length of daylight</td>
<td>sensitive (flowers when days get shorter)</td>
<td>sensitive (flowers when days get shorter)</td>
<td>not sensitive</td>
<td>Some varieties produce less forage when grown near the equator where day lengths are shortest.</td>
</tr>
<tr>
<td>Tolerance to low soil carbon</td>
<td>medium</td>
<td>high</td>
<td>low</td>
<td></td>
</tr>
<tr>
<td>Characteristic</td>
<td>Sorghum</td>
<td>Millet</td>
<td>Maize</td>
<td>Additional notes</td>
</tr>
<tr>
<td>---</td>
<td>---------</td>
<td>--------</td>
<td>-------</td>
<td>--</td>
</tr>
<tr>
<td>Nutrient use efficiency (response to applied organic and inorganic nutrients)</td>
<td>medium</td>
<td>low</td>
<td>high</td>
<td></td>
</tr>
<tr>
<td>Susceptibility to pests and diseases</td>
<td>medium</td>
<td>high</td>
<td>low</td>
<td></td>
</tr>
<tr>
<td>Susceptibility to Striga</td>
<td>high</td>
<td>high</td>
<td>very high</td>
<td>Both Striga hermontheca and Striga asiatica</td>
</tr>
<tr>
<td>Harvesting, threshing and winnowing</td>
<td>less difficult compared with millet</td>
<td>difficult, tedious, labour intensive, stems cut hands</td>
<td>easiest to harvest</td>
<td></td>
</tr>
<tr>
<td>Availability of market</td>
<td>good</td>
<td>fairly good (but no international market)</td>
<td>very good</td>
<td></td>
</tr>
<tr>
<td>Unit price of grain</td>
<td>good</td>
<td>very good</td>
<td>fair</td>
<td></td>
</tr>
<tr>
<td>Input costs</td>
<td>medium</td>
<td>low</td>
<td>high</td>
<td></td>
</tr>
<tr>
<td>Level of management</td>
<td>low</td>
<td>low</td>
<td>high</td>
<td></td>
</tr>
<tr>
<td>Return to investment</td>
<td>medium</td>
<td>low</td>
<td>high</td>
<td></td>
</tr>
<tr>
<td>Suitability for intercropping with cowpea</td>
<td>medium</td>
<td>low</td>
<td>high</td>
<td></td>
</tr>
<tr>
<td>Suitability of stovers to make structures e.g. fences, cages for chicken</td>
<td>high</td>
<td>high value</td>
<td>not used</td>
<td>Structures made using millet and sorghum stover can last for more than a year</td>
</tr>
<tr>
<td>Suitability of stover for livestock fodder</td>
<td>high</td>
<td>medium (can be stored for long periods)</td>
<td>low (used immediately after harvest - does not keep for long)</td>
<td>All three have about 4-10 g N/kg dry matter, which is low</td>
</tr>
</tbody>
</table>
Soils in sorghum and millet growing areas are poor in fertility and this is made worse by the lack of or extremely short fallow periods. Although these crops seem to do better in poor soils than maize (Table 3), sorghum responds better to improved soil conditions than millet.

Increasing current yields of sorghum and millet depends more on good agricultural practices (e.g. timeliness of the cultural practices and the appropriateness of inputs used) but also on soil fertility. Sorghum and millet will give a 60-70% increase in yield if the farmer uses good seed and observes timely planting at optimum spacing, timely weeding and timely fertilizer application. This is why an ISFM approach, which means using good seed, fertilizers (inorganic, mineral) and good management practices, should be used to increase productivity of the crops at smallholder level.

Table 3: Reasons for growing (or not growing) sorghum/millet instead of maize.

<table>
<thead>
<tr>
<th>Why grow sorghum and millet instead of maize?</th>
<th>Why grow maize instead of sorghum or millet?</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Sorghums and millets are more tolerant to adverse weather conditions than maize.</td>
<td>• Under good weather and soil conditions, maize gives better yields than sorghum and millet.</td>
</tr>
<tr>
<td>• Maize cannot do as well on marginal soils as sorghum and millet. Even without fertilizer application, their deep rooting systems help them to produce harvests in situations where maize will fail.</td>
<td>• Lack of international market, especially for millet. But there is a niche international market for millet as pet (bird) food and baby food.</td>
</tr>
<tr>
<td>• Social-cultural significance (e.g. used in naming ceremonies). Sorghum and millet cannot be substituted with other crops for these purposes.</td>
<td>• The ratio of grain to straw is three times higher for maize than sorghum and millet.</td>
</tr>
<tr>
<td>• There is growing demand for sorghum in the food and beverage industry (e.g. in Nigeria used in place of malted barley).</td>
<td>• Palatability of sorghum/millet straw is low compared with maize for livestock.</td>
</tr>
<tr>
<td>• Yields of sorghum more are stable than maize in adverse weather conditions.</td>
<td>• Sorghum and millet are highly vulnerable to bird damage.</td>
</tr>
<tr>
<td>• Millet is more nutritious than maize: it has more iron and less gluten.</td>
<td></td>
</tr>
</tbody>
</table>
3. Land preparation and planting

Land preparation

Land preparation is primarily aimed at having a good seed bed for the crop. In addition it is used to meet other objectives, including:

• Removal of weeds and other unwanted plants
• Avoiding soil erosion
• Slowing down run-offs to enhance water infiltration and reduce evaporation
• Supplying nutrients (especially N and P, and soil organic matter) through application of mineral and organic fertilizer to the soil.

To achieve these objectives:

• Slash unwanted vegetation but in semi-arid zone some trees and shrubs maybe kept to develop a parkland for an ‘evergreen’ agriculture. Evergreen agriculture involves maintenance of a green cover throughout the year; in this case incorporating selected trees and shrubs into the sorghum/millet cropping system.

• Avoid burning as much as possible. If it is essential, then gather material for burning in heaps at the edge of the field to minimize negative effects of burning whole field (see Table 4 for more information).

• Construct or repair water harvesting structures (see examples in Table 5).

• Till the land by hand, animal traction, mechanical cultivator or tractor. Tillage helps to break crust and hardpans, bury plant residues and incorporate fertilizer. The land can be flat-tilled or ridged. Ridging is done to control waterlogging and is useful under Sudan and northern Guinea ecologies – crops are planted on the ridges where drainage is better.
- Organic fertilizer (manure, cover crop, mulch) and other soil amendments, such as lime, are usually applied then worked into the soil during tillage.

- Mineral fertilizer is applied mostly at planting and/or at first weeding of the crop. However, to be effective all fertilizer should be applied before the panicles emerge (Photo 2).

Table 4: Benefits and disadvantages of burning

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Quick release of nutrients</td>
<td>• Land degradation (soil is exposed to wind and water erosion)</td>
</tr>
<tr>
<td>• Pest and disease control</td>
<td>• Loss of nutrients (ash can blow away)</td>
</tr>
<tr>
<td>• Farmer safety (elimination of dangerous scorpions, snakes)</td>
<td>• Loss of biodiversity</td>
</tr>
<tr>
<td>• Facilitate other activities (e.g. use of animal traction or hoes for land preparation)</td>
<td>• Loss of soil carbon</td>
</tr>
<tr>
<td></td>
<td>• Localized spots of high concentration of nutrients where fires are lit</td>
</tr>
<tr>
<td></td>
<td>• Contribution to greenhouse gases (global warming)</td>
</tr>
</tbody>
</table>

Photo 2: Sorghum before and after panicle emergence (A) Before (photo: CABI) (B) After (photo: CABI)
To reduce soil and water loss, it is important to use the right tillage methods. Table 5 gives some guidance on what to do during land preparation and beyond.

Table 5: How to reduce water loss in the soil.

<table>
<thead>
<tr>
<th>Challenge</th>
<th>Actions to address challenge</th>
</tr>
</thead>
</table>
| Reducing runoff and wind erosion | • Contour ploughing (ploughing across the slope, not along it).
• Harrowing ploughed fields at right-angles or diagonally to the direction ploughed. This ensures a well-levelled field.
• Erect stone bunds or live (vegetation) bunds.
• Dig zai pits.
• Maintain perennial vegetation cover (pasture or cover crops).
• Apply mulch (e.g. crop residues).
• Create terraces on steep slopes.
• Cut stalks instead of uprooting, leaving roots of plants in soil at harvest. |
| Improve infiltration | • Add soil organic matter, such as animal manure to improve water holding capacity and reduce crust formation.
• Loosen the soil on flat land (e.g. by ploughing).
• Create contour bunds and zai pits.
• Shallow tillage to break up soil crust. |
| Reduced evaporation and transpiration | • Apply mulch.
• Use varieties with high water-use efficiency. |
Choice of variety

Sorghum and millet come in different cultivars and varieties that are adapted for various areas and uses. These influence the choice a farmer will make in what to grow. The choice of varieties will also depend on the length of the growing period and other considerations discussed below.

There are two types of millets: pearl millet, also known as bulrush millet, and finger millet. Pearl millet is grown in western, central, eastern and southern Africa, and finger millet is mainly grown in eastern Africa. Finger millet has smaller grains than pearl millet: the grains of pearl millet are about 3–4 mm long while those of finger millet are about 1.5 mm long.

Sorghums and millets provide both food for people and fodder for livestock. The stems have many uses; for example, they can be used for fencing, weaving and firewood. The grain can be used as a staple food or to make beer; for sorghum, red types are preferred for beer and white types for food. The red types of sorghum have high tannin content which makes them bitter: birds do not eat them and they store better.

Sorghum and millet cultivars include short, medium and late maturing types (Table 6). The greater the number of days to reach maturity, the taller the crop stands and the better the yield under good moisture, nutrient and temperature conditions. However, under arid conditions where moisture becomes more limiting, the early maturing cultivars will be more reliable to give good yields. Therefore the choice of maturity types will depend on prevailing conditions.

Some cultivars will flower early if exposed to days with many hours of sunlight and will flower later if exposed to days with fewer hours of sunlight. For example, in West Africa, sorghum planted
in April-June tends to flower in August-September when days are long. These differences in maturity periods are exploited in intercropping. Farmers often plant both early and late maturing millets at the same time and in the same field with the aim of having a staggered harvest.

Table 6: Maturity types and their duration.

<table>
<thead>
<tr>
<th>Crop</th>
<th>Maturity types/growth habit</th>
<th>Days from sowing to harvest</th>
<th>Height (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Millet</td>
<td>early</td>
<td>60–90</td>
<td>1.5–2.5</td>
</tr>
<tr>
<td></td>
<td>late</td>
<td>90–135</td>
<td>3–4.5</td>
</tr>
<tr>
<td>Sorghum</td>
<td>early</td>
<td>90–100</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>medium</td>
<td>100–120</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>late</td>
<td>120–160</td>
<td>4</td>
</tr>
<tr>
<td>Cowpea</td>
<td>*determinate</td>
<td>60–70</td>
<td>0.3–0.6</td>
</tr>
<tr>
<td></td>
<td>**indeterminate</td>
<td>more than 70</td>
<td>creep or climb to over 1.2 m</td>
</tr>
</tbody>
</table>

Determinate: Flowering continues only until the first flower formed develops fully into a pod. All the pods mature within a short period and all can be harvested at the same time. Most determinate types are erect, that is they grow upright and do not need support.

Indeterminate: Growth of terminal buds and flowers continues until adverse growth conditions (e.g. drought or frost) set in. So, pods mature over a longer time and more than one harvest is required. Many of these types climb or creep along the ground.

Legumes used in intercropping of sorghum and millet are mostly cowpea, groundnuts and soybean, the latter only in wetter ecological zones (e.g. where rainfall is over 700 mm per year). Since most of the determinate cowpea varieties on the market mature in around 60 days, it is good to intercrop them with medium and late sorghum and millet varieties to minimize competition for nutrients and sunlight.

Traditionally, however, the indeterminate, long duration cowpeas are intercropped with these cereals. When using an indeterminate variety in an intercrop, it should not be allowed to climb the cereal plants, especially before the cereal heads emerge, to avoid shading.
Soybean has only recently started to be grown as an intercrop with sorghum or millet. Due to its longer maturity periods (almost the same as most of the varieties of the cereals) it is advisable to grow soybean in strips (see examples of plant arrangements on page 22).

Other agronomic considerations that should be taken into account in the choice of cultivar/varieties include:

- timing and distribution of rainfall
- tolerance to pest and diseases, such as *Striga*, mildew, spittle bugs and birds (at maturity)
- resistance to drought/dry-spells
- responsiveness to nutrients applied
- relative yield.

The socio-economic factors that need to be considered include:

- Available market for the cultivars – colour of grains, taste of food produced from them and demand by buyers. Some cultivars have high commercial value because they are used in large-scale food and beverage industry, such as baby foods and breweries.
- Farmer preferences – some varieties are preferred for household food and others for animal feed.
- Mitigation of hunger gaps – mixing different maturity types spreads risks and helps to ensure availability of food for a long period, thereby enhancing food security. This is the main reason why sorghum, millet and legumes are traditionally grown together.
Before planting

There are some activities necessary to carry out just before planting to prevent wastage of seed and ensure establishment of a good plant population of the cereals and legumes. These are:

- germination test
- seed treatment
- determination of a thousand seed weight
- in some cases, raising seedlings in a nursery for transplanting.

Germination test

Most farmers plant many seeds per hole as they are not sure of the viability of the seed. A germination test can be a useful guide to how many seeds should be sown in a hole. The test gives an idea of how many ‘normal’ seedlings can be expected from a given number of seeds. ‘Normal’ means the root and shoot parts are not deformed and look healthy, not diseased.

There are two main ways of conducting a germination test: sowing onto a prepared seedbed or sowing on moist paper.

When directly sowing a sample of seed on a prepared bed, there is a risk that poultry and other animals could disturb the moist soil in search of worms, insects and the seed sown unless the beds are protected.

Using moist newspaper, this can be done indoors, thereby avoiding the risk of disturbance from domestic animals.
Table 7: To conduct a germination test:

<table>
<thead>
<tr>
<th>Method</th>
<th>Instructions</th>
</tr>
</thead>
</table>
| On sunken beds | • Prepare a sunken bed of about 12 cm by 12 cm.
 • Select 100 seeds randomly from the batch with a spoon.
 • Plant the 100 seeds closely, about 1 cm apart on the wet bed.
 • Water the bed if it is dry to the touch of the hand.
 • After 5-7 days, count the number of normal seedlings that have emerged. |
| On newspaper | • Select 100 seeds randomly from the batch with a spoon.
 • Take three newspaper sheets, arrange in layers, moisten the sheets with clean water.
 • Place the seeds on the three layers of moist newspaper in 10 rows. Each row should have 10 seeds.
 • Cover the seed with a layer of moist newspaper.
 • Roll the pile of newspaper carefully into a tube with the seed tightly sandwiched between the sheets, tie the tube with thread at the ends and in the middle.
 • Stand the rolled newspapers in a container with just enough water to keep them moist.
 • After 5-7 days, unroll the newspapers and count the number of normal seedlings that have sprouted. |
| On a plate | • Select 100 seeds randomly from the batch with a spoon.
 • Line a large plate with three layers of moist newspaper and place the seeds on them.
 • Cover the seeds with another moist layer of newspaper or paper towel.
 • Place the plate in a place where it will not be disturbed and keep the paper moist but not soggy by sprinkling water on it when dry.
 • After 5-7 days, count the number of normal seedlings that have sprouted. |

After counting the emerged or well-sprouted seedlings, the next step is to calculate the germination percentage. For 100 seeds, the number of well emerged or sprouted seed gives you the percentage; for example, if 85 are counted, then the germination percentage is 85%.

One can also use 25 or 50 seeds instead of the 100 for the test, but it is not advisable to use fewer than 25 seeds as the larger sample size improves the accuracy of the test result. In this case, the germination percentage can be calculated by dividing the number of well emerged or sprouted seeds by the initial number of seeds used and then multiply by 100: for example, if 25 seeds
are used and 14 emerge/sprout then the germination percentage = $(14/25) \times 100 = 56\%$.

To ensure a high germination percentage if using own seed saved from a previous crop, it is good to get seed from healthy plants. Clean seed by removing damaged seed and other material, such as stones, after threshing and drying, and store the seed materials separately from grain to be used for food, in a dry area (for more information on storage, see section on harvesting and storage on page 39). It is also good to purchase seed from a registered dealer.

Seed treatment

As well as low germination rates, another reason farmers often also plant many seeds per hole is because they want to compensate for the loss of seed through the feeding activities of soil-borne pests like ants and millipedes. Sometimes birds such as francolins dig up the seeds. Seed loss after planting can also be due to fungal infection already in the seed or present in the soil. In addition, seed may fail to germinate due to dormancy.

Sometimes sorghum and millet seed cannot germinate straight after harvesting due to a dormancy period. After the seed has been stored for about three months it germinates normally. Most pearl millet varieties do not show dormancy and can germinate after harvest. Dormancy is a useful trait when the crop is in the field because it ensures that the grains do not germinate on the heads if rained on. Dormancy can be broken by seed priming.

From the germination test done on moist paper, one can sometimes see fungal growth on some infected seedlings. This should prompt the farmer to carry out seed treatment, either by dusting the seeds with a fungicide or priming (see below).

Seed priming means soaking the seed in water overnight and then planting it the following day. The main benefit of seed priming is
that it shortens the germination period. It can also reduce disease incidence in seeds and can break seed dormancy in some crops like sorghum and millet if this is an issue. This helps to ensure even and uniform germination. In arid areas, seed can be primed just after a heavy rain overnight and sown in the moist soil the next day to gain a head-start in germination.

Transplanting

In areas where the onset of the rains are not certain (mostly in the Sahel belt) farmers often plant up to about 20 millet seeds per hole awaiting the rains to come. The need for a large amount of seed can be reduced either by priming the seed on the eve of direct sowing (see page 16) or planting them in a nursery and transplanting the seedlings after 40 days.

The nursery bed needs to be a well-prepared seed bed. The seedlings are watered as needed.

Transplants are mainly used when the fields to be planted are small because it is labour intensive. It can also be used to fill gaps in the field when adverse conditions affect field establishment. Traditionally, farmers do not raise seedlings in a nursery but rather transplant seedlings from well-established stands to the failed stands because many seeds are sown in one hole.

Transplanting has several advantages, including:

• *Striga* control – seedlings raised in a nursery have already well developed roots that the *Striga* roots cannot attach to when transplanted.

• Good plant density – a good crop stand can be ensured.

• Vigour – the good seed bed prepared in the nursery coupled with the watering regime ensures vigorous seedlings as compared to direct sowing.
• Shoot fly and spittle bug damage control (see Table 11 on page 44).

Transplanting also has some disadvantages:

• It is labour intensive.

• Once plants are lifted from the nursery bed they must be planted within a short time.

• The nursery should be close to the field to avoid delays between lifting from nursery and planting.

Planting

In general sorghum and millet is planted when the rains have established to ensure a good stand and vibrant growth. The date of planting is also important as the first two-thirds of the crops’ maturity period must occur when growing conditions, especially moisture, are optimal. The last third of the crops’ growing cycle is mainly spent in filling the grains and ripening (maturing), which requires less rainfall and higher temperature than the first two-thirds.

Another factor to take into consideration when determining the dates of planting is the day length. This is important to consider because some varieties of sorghum and millet are photo-period sensitive. This means that such varieties will remain in vegetative growth (not flowering) while days are short and will not flower until longer days are experienced.

Sorghum and millet are predominantly grown in mixed cropping systems with various configurations of intercrops, all aimed at optimum exploitation of moisture, sunlight, nutrients and space (above and below ground).
Sorghum

The aim is to establish about three seedlings per hole. To achieve this, if germination rate is very high (over 95%), farmers should sow three seeds per hole; if germination is poorer, farmers should plant about four to five seeds per hole.

If the seed has a germination percentage of 80%, on average four of the five seeds will germinate. However, if the germination percentage is below 60%, it means on average less than three of the five seeds will emerge. In such a case it is advisable to double the seed rate by planting 10 seeds per hole.

The seeds should be planted at a depth of 0.8–1.5 inches (2–4 cm), thinned to two seedlings per hole. Where less than two seedlings emerge, gaps can be filled using seedlings thinned from other holes.

In sole cropping, a wide range of planting distances are used for sorghum. The distance between rows (inter-row spacing) varies from 40–90 cm depending on the settings of the machines used to make the ridges or if they are made with a hoe. If the ridges are made with a hoe, the inter-row spacing is closer; when machines are used, rows tend to be wider.

The wider the inter-row spacing, the closer the within-row spacing, mostly ranging from 15–40 cm (see Photo 4 for row planting). At
these varying spacing, with 2 plants per hole the seed rate will be about 7-10 kg of sorghum seed per hectare. Yields increase when the plant population also increases, so long as there is adequate moisture and nutrient conditions. Seed rates also need to be increased if germination percentage is poor.

Millet

Traditionally, farmers often sow many seeds per hole – sometimes as many as 50 – especially in areas with intense wind erosion or if planting is carried out before rains start. This is to prevent the seed from sinking deeper in the sandy soils and also to compensate for loss of seed carried away by the wind.

However, a significant amount of seed can be saved if farmers use seed with a good germination percentage, prime their seeds overnight and plant when the rains have established. Under such circumstances, farmers can sow just five seeds per hole, thinning to two to three seedlings after establishment as millet will tiller (i.e. produce side shoots).

Millet is planted at a depth of 0.8–1.5 inches (2–4 cm). In heavy clay soils and in soil that has large clods seeds should be planted in well-prepared soil so that the seedlings can emerge with the least effort. On sandy soils they should be planted deeper to prevent them from drying up.
In sole crops, both inter-row and within-row spacing vary from 20–100 cm. On poorer soils it is good to use wider spacing to reduce the below-ground competition by the lateral roots of neighbouring plants.

Millet produces a lot of tillers and the wider the spacing the more tillers a stand produces. The closer they are planted, the more difficult it is to work in between the plants. For example, for weeding: most smallholder farmers who use hoes for weeding prefer the wider spacing – the fewer plant stands are compensated for by the more profuse tillering.

Legumes

Legumes are sometimes planted in monocrops in rotation with sorghum and millet. Short-duration legumes can sometimes be grown early in the season, preceding the main crop if the rainy season is long. For example, short-duration cowpea that matures in about two months can be planted at the beginning of the rainy season, harvested and the stover slashed down, and sorghum or millet then planted immediately after in the same season.

For cowpeas, the seed rate is about 12–25 kg per hectare. Erect varieties can be planted at inter-row spacing of 50 cm and within-row spacing of 20 cm. Semi-erect and creeping varieties can be planted at inter-row spacing of 75 cm; within-row spacing can be 30 cm for semi-erect types and 50 cm for creeping types. For all types, three seeds should be planted per hole if germination percentage is good, or four seeds per hole if germination percentage is poor. Thin to two seedlings two weeks after planting.

Intercrops

In intercrops, the distance between sorghum rows (inter-row spacing) can be between 60 – 90 cm to make room for the intercrop (a legume or millet or both). The within-row spacing
can be 40 – 60 cm if no other crop will be planted between the sorghum stands in the row. If another crop will be planted between the sorghum stands in the row then the within-row spacing of sorghum can be between 60 – 80 cm as the inter-row spacing.

Legumes are the main intercrop partners in the sorghum and millet cropping systems, although other crops, such as okra and sesame, also feature.

Often farmers either mix cereal and legume seeds together, planting them in no particular pattern, or separately and at different times. In an intercrop situation it is best to plant the legumes and the cereals in different holes in an ordered pattern to maximize yield. For example, two rows of cowpea spaced at 20 cm x 20 cm are alternated with a row of sorghum/millet (see Figure 2).

Figure 2: Sorghum-cowpea intercrop
Factors to consider when choosing a spacing pattern for intercrops include:

• the maturity period of the crop (short, medium, long duration)
• the farmer’s objective (e.g. if sorghum, millet or cowpea is for dual purpose (for grain and fodder), plant at higher densities if the objective is to get more fodder).
• The priority crop (e.g. the farmer might be more interested in cowpea than sorghum; in such a case the cowpea stands will be more than those of sorghum).

The creeping types of cowpea are normally preferred in intercrops as they are more adapted to shading than the erect types used in sole cropping. Another reason why farmers prefer the creeping types in intercrops is that they have more leaves than erect types and can serve as a green vegetable for the household, which is useful for dietary diversity. Creeping types are effective moisture and soil conservation tools as they cover the soil.

Due to the numerous benefits derived from growing legumes in association with sorghum and millet (see Table 8, below), it is good to increase the legume component in intercrops.

Table 8: Why combine sorghum/millet with legumes?

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduces use of mineral fertilizer</td>
<td>More labour intensive</td>
</tr>
<tr>
<td>Legume as a cash crop increases ability to buy inputs (e.g. fertilizer)</td>
<td>Increased pesticide use (if cowpea is introduced)</td>
</tr>
<tr>
<td>Nutrition (legumes are a good protein source)</td>
<td>High cost of legume seed compared to the cereals</td>
</tr>
<tr>
<td>Better crop-livestock integration (enhanced fodder quality)</td>
<td>Potential reduction in yield of cereal</td>
</tr>
<tr>
<td>Better soil conservation (soil cover by legume)</td>
<td></td>
</tr>
<tr>
<td>More efficient use of land</td>
<td></td>
</tr>
<tr>
<td>Improved biodiversity in the field</td>
<td></td>
</tr>
<tr>
<td>Reduced risk of pests and diseases</td>
<td></td>
</tr>
<tr>
<td>Increased phosphate rock solubility/uptake of N due to root exudates from legumes</td>
<td></td>
</tr>
<tr>
<td>Improved physical, chemical and biological properties of the soil</td>
<td></td>
</tr>
<tr>
<td>Better weed control</td>
<td></td>
</tr>
</tbody>
</table>
Key checks

• Prepare a good seedbed – avoid burning plant materials as much as possible.

• Reduce water loss from the soil by using practices like contour ploughing, applying mulch, and maintaining a crop cover.

• Include legumes in the system to improve soil fertility and productivity.

• Plant crops at the beginning of the rainy season.

• Before sowing, carry out a germination test, then adjust the seed rate to take into consideration germination percentage.

• Preferably soak seeds overnight before planting to improve crop establishment.

• For sorghum, establish about three seedlings per hole, thinned to two seedlings per hole. Sow seeds at 0.8–1.5 inches (2–4 cm) depth. In sole cropping, inter-row spacing can be 40–90 cm and within-row spacing can be 15–40 cm. The wider the inter-row spacing, the smaller the within-row spacing. Seed rate is about 7–10 kg seed per hectare. In intercrop, sorghum rows can be 60–90 cm apart.

• For millet, sow five seeds per hole, thin to two to three seedlings after establishment. Sow at a depth of 0.8–1.5 inches (2–4 cm); plant deeper in sandy soil than in clay soil. In sole crops, both inter-row and within-row spacing can vary from 20–100 cm and should be wider in poor soil.
4. Crop management

Plant nutrition

Plants take their nutrients from the soil. To ensure sustained crop production on the same piece of land the nutrients taken up by the previous crops have to be replaced. This is done through the application of fertilizer.

There are three categories of fertilizer: organic, mineral (also known as inorganic or chemical) and biological (also known as bio-fertilizer).

Bio-fertilizers are living organisms whose activities when applied to the soil or seed provide nutrients to the crop. Rhizobia and mycorrhizae (fungi which grow in association with the roots of specific host plants) are examples of bio-fertilizers.

Mineral fertilizers are expensive and to derive the best out of them, the 4Rs of fertilizer management (see Box 1, below) should be followed in the broader context of ISFM. This involves a combination of practices – for example, using good seeds, organic and mineral fertilizers and use of legume intercrops, all under good management practices.

Box 1: The 4Rs (four ‘rights’) of fertilizer management

- Right fertilizer product
- Right fertilizer rate
- Right time for fertilizer application
- Right placement of basal fertilizer
Fertilizer and soil amendments

Basal fertilizers, which are the first nutrients applied to a crop, are applied before or at planting. These fertilizers contain the nutrients that crops need for early growth or those that are not easily lost from the soil in the root zone. Any fertilizer applied after the basal is called top-dressing.

For sorghum and millet, the main types of fertilizer which should be applied before planting are phosphorus (P) fertilizers and organic manure. Most soils (over 80%) in the sorghum and millet belt are deficient in P.

Soil amendments are either non-nutritive materials or materials that build up nutrients in the long term, over years, rather than supplying nutrients primarily for one cropping season. Most soil amendments used to correct soil acidity are also applied before planting. They include lime, rock phosphate and gypsum.

Apart from correcting acidity, lime (CaCO_3) also corrects calcium (Ca) deficiency. Although highly acidic soils are not common in the sorghum and millet growing belt, where they occur soil acidity results in stunted roots of crops (see Photo 5).
Photo 5: Maize and many other crops are affected by high acidity in soils. Normal and stunted roots of maize shown in this photo (photo: CABI).

Rock phosphate is good for building long-term soil capital as it slowly releases P.

Gypsum (CaSO$_4$·2H$_2$O) act as a source of both Ca and sulphur (S). It improves alkaline soils and treats aluminium toxicity. It is also used to improve soil structure by improving particle aggregation and inhibiting or overcoming dispersion (cracking) in clayey, saline and sodic (sodium laden) soils.

Sodic soils are alkaline soils with a high pH (above 9) due to the presence of excessive sodium carbonate (Na$_2$CO$_3$). They are mostly found in arid and semi-arid areas and are poor in drainage because their structure impedes water infiltration. This increases run-offs and erosion thereby reducing water availability for plant growth.

Organic inputs come in different forms such as compost, farmyard manure (FYM), and green manure from cover crops and crop residues. Some farmers construct temporary overnight pens for their cattle, sheep and goats in their fields during the dry season. The pens are moved from time to time to new areas on the field thereby leaving the urine, droppings and left-over food spread
across the field ready to be ploughed in during land preparation. Some pastoralists keep their cattle in farmers’ fields in the evenings in exchange for grains and other foodstuff.

Nitrogen (N) should be applied as a top-dressing before the panicles emerge: a common mistake is to apply N when the grain is filling out, which is too late. The most commonly available N sources available to farmers are urea, diammonium phosphate (DAP) and sulphate of ammonia (SA).

The methods of application of fertilizers and soil amendments are: (i) broadcast, (ii) in bands and (iii) placed in the hole where the seed will be or is planted (spot application). Each method has its advantages and disadvantages, shown in Table 9, below.

Table 9: Advantages and disadvantages of method of applying fertilizers and soil amendments

<table>
<thead>
<tr>
<th>Method</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Broadcast</td>
<td>• Improves the fertility of the whole field, not just fertilizing the crop</td>
<td>• Needs to be ploughed in or incorporated to be effective</td>
</tr>
<tr>
<td></td>
<td>• Easier to do</td>
<td>• Nutrients, e.g. P, more in contact in soil and therefore fixed more</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• More nutrients available for weeds to take up</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Can scorch the plant if sprinkled on the leaves</td>
</tr>
<tr>
<td>Banding</td>
<td>• Targets the crop - fertilizer is more available to plants and less available to weeds</td>
<td>• Needs to be worked into the soil to be effective</td>
</tr>
<tr>
<td></td>
<td>• P and K fixed less by soil as contact with soil is reduced</td>
<td>• Requires more labour</td>
</tr>
<tr>
<td></td>
<td>• Saves time and labour by applying when preparing ridges</td>
<td>• Can scorch the plant if applied too close to young seedlings</td>
</tr>
<tr>
<td>Spot application, e.g.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>microdosing (see Box 2)</td>
<td>• More precise targeting</td>
<td>• Needs to be incorporated to be effective</td>
</tr>
<tr>
<td></td>
<td>• P and K fixed less by soil as contact with soil is reduced</td>
<td>• Can scorch the seed or plant if the seed is dropped directly on it or if the fertilizer is sprinkled on the leaves.</td>
</tr>
<tr>
<td></td>
<td>• Saves time and labour by applying when preparing seedbeds and zaï pits</td>
<td></td>
</tr>
</tbody>
</table>
Fertilizer rates
The overall aim is to apply fertilizer at rates which are most profitable for the farmer, not which maximise yields. Generally, sorghum responds better to fertilizer than millet – so if growing sorghum and millet, more fertilizer should be applied on sorghum than on millet.

As a rule of thumb:

- Not more than 40 kg of N and 20 kg of P per hectare should be applied to millet.
- For sorghum, the maximum N should be 60 kg and maximum P should be 20 kg per hectare.

In intercrops, the legume is not given any inorganic fertilizer as the focus is mainly on the cereals – so the above rules of thumb

Box 2: Microdosing
Microdosing refers to the application of small, affordable amounts of fertilizer close to the seed or stand.

Some fertilizers can be applied in splits, applied to meet peak nutrient requirements and applied to avoid nutrient losses. The fertilizer can be measured using the ‘three-finger pinch’, bottle-tops or other small measuring units. If planting in zai pits, basal fertilizer should be placed within the pits at time of planting. Placing fertilizer close to the seeds or plants improves fertilizer use efficiency, reduces amounts of fertilizer required and improves yields in drought conditions due to the extensive root system.

Microdosing is a low-cost way of boosting yields in the short term, producing a surplus for sale, the cash income from which can then be used to buy more fertilizer next season. The farmer is thereby graduating from microdosing to sustainable intensification in which the soil nutrient balance is maintained.
still apply. However, the legumes can be inoculated with rhizobia to enhance nitrogen fixation and productivity. When growing a legume in rotation with the cereals, one can apply 20 kg of P per hectare to the legume.

Soil amendments

If available, organic inputs (like animal manure and compost) should be applied at a rate of 2–5 tonnes every two years. Since these inputs are rarely available in large quantities, application can be localised (e.g. applying animal manure in zai pits or in a selected area of the farm to address specific constraints diagnosed by the farmer or to enhance efficiency of input in target areas).

Rock phosphate should be applied to soils every three years at a rate of 60 kg P$_2$O$_5$ per hectare. The rock phosphate can also be applied to compost which is then applied to the soil.

Rock phosphates from different sources contain different amounts of P: to supply the required amount of P, the amount of rock phosphate applied needs to be based on its P content. For example, if using Tilemsi rock phosphate from West Africa, which contains 30% P$_2$O$_5$, to supply 60 kg P$_2$O$_5$ requires: 60 kg x 100/30 = 200 kg Tilemsi rock phosphate.

On very light soils (sandy soil) that are suitable for millet, lime should be applied every five years at a rate of about 2 tonnes per hectare. Higher rates, up to about 10 tonnes per hectare, should be applied on heavier soils where sorghum dominates. If in doubt of the rate to apply,
seek advice from an agricultural specialist.

Gypsum should be applied every three years on alkaline soils as a soil conditioner at a rate of 2–4 tonnes per hectare. Gypsum is particularly good in promoting nitrogen fixation in legumes (groundnuts, cowpea and soybeans) (see nodulating plants, Photo 6) at low rates of 100–300 kg per hectare to supply the needed sulphur. However, that sulphur could be got more cheaply from single superphosphate (SSP). In sandy soils, groundnut pods may not fill due to Ca deficiency: gypsum should be applied at a rate of 200–400 kg per hectare just before the groundnut crop flowers to prevent this problem (Photo 7).

Usually, once harvesting is done, cattle are grazed on the crop fields. The cattle normally do not belong to the owners of the fields, however, the owners request for the cattle to sleep and/or graze in their fields in order to leave their waste (droppings, urine) in these fields. In return, the owners of the fields give the cattle herders (or owners) gifts.

In addition, dry crop residues, such as sorghum or millet stover, can be returned to the field after harvesting.

Nutrient supply

Fertilizers supply the elemental nutrients, especially N, P and K, that crops need to grow well and be productive. Following are some examples of fertilizer calculations for sorghum and millet focusing on the two main nutrients, N and P.

Note: Except for N, the proportion of nutrients indicated on fertilizer bags are for the oxide not the element (see Look-up Table 2 on
Example 1: Using DAP and urea as the source of N and P for millet

To apply 40 kg of N and 20 kg of P per hectare for a millet crop with stands spaced at 100 cm by 30 cm (about 30,000 stands per hectare).

If supplying all P as basal fertilizer using DAP:

To supply 20 kg of elemental P, requires 20 kg \(\times \frac{100}{43.6} \) = 45.9 kg \(P_2O_5 \).

Because DAP contains 46% \(P_2O_5 \), the amount of DAP required to supply 45.9 kg \(P_2O_5 \) is: 45.9 kg \(\times \frac{100}{46} \) = 99.8 kg – (that is about two standard 50 kg bags (100 kg) of DAP fertilizer).

For 100 kg (or 100,000 g) of DAP per hectare, each stand should receive \(\frac{100,000 \text{ g per hectare}}{30,000 \text{ stands per hectare}} \) = 3.3 g per stand of DAP fertilizer at planting. A heaped soda bottle-top of fertilizer weighs about 5 g, so two heaped bottle-tops of DAP should be shared among three planting holes or stands.

DAP also contains 18% N, so 100 kg will also supply 18 kg of N. To meet the target of 40 kg N for the top-dressing we need to supply an additional 22 kg N per hectare (40 kg – 18 kg = 22 kg) from urea. To provide 22 kg N from urea, which contains 46% N, we need to apply 22 kg \(\times \frac{100}{46} \) = 48 kg (i.e. about one 50 kg bag of urea per hectare).

For 50 kg (50,000 g) urea per hectare, each stand should receive 50,000 g/30,000 stands = 1.7 g per stand of urea as a top dressing. Assuming a heaped soda bottle-top of urea weighs about 5 g, then one heaped bottle-top should be shared among three stands.
Example 2: Using NPK 17-17-17 and urea as a source for N and P for millet

To apply 40 kg of N and 20 kg of P per hectare for a crop spaced at about 100 cm by 30 cm (about 30,000 stands per hectare).

If supplying all the P as basal fertilizer using NPK:

To supply 20 kg of elemental P, requires 20 kg x (100/43.6) = 45.9 kg P₂O₅.

Because NPK 17-17-17 contains 17% P₂O₅, the amount of NPK required to supply 45.9 kg P₂O₅ is: 45.9 kg x (100/17) = 270 kg. That is about five and a half standard 50 kg bags of NPK fertilizer per hectare.

NPK 17-17-17 also contains 17% N: 270 kg is equivalent to 270 x (17/100) = 45.9 kg of N. This is slightly more than the target amount of 40 kg N, so no top-dressing is needed in this case.

For 270 kg (or 270,000 g) of NPK per hectare, each stand should receive 270,000 g/30,000 stands = 9 g per stand, or about two full soda bottle-tops per stand.

Example 3: Using DAP and urea as the source of N and P for sorghum

To apply 60 kg of N and 20 kg of P for a sorghum crop spaced at 90 cm by 30 cm (about 40,000 stands per hectare).

If supplying all P as basal fertilizer using DAP:

To supply 20 kg of elemental P requires 20 kg x (100/43.6) = 45.9 kg P₂O₅.

Because DAP contains 46% P₂O₅, the amount of DAP required to supply 45.9 kg P₂O₅ is: 45.9 kg x (100/46) = 99.8 kg – (that is about two standard 50 kg bags (100 kg) of DAP fertilizer).
For 100 kg (or 100,000 g) of DAP, each stand should receive 100,000 g/40,000 stands = 2.5 g per stand of DAP fertilizer at planting. A heaped soda bottle-top of fertilizer weighs about 5 g, so two heaped bottle-tops of DAP fertilizer should be shared among two planting holes or stands.

100 kg of DAP, which contains 18% N, will also supply 18 kg of N. For the top-dressing we need to supply an additional 42 kg N per hectare (60 kg – 18 kg) from urea.

To provide 42 kg N from urea (i.e. which contains 46% N, we need to apply 42 kg x (100/46) = 91 kg urea, i.e. about two 50 kg bags (100 kg) per hectare).

For 100 kg (100,000 g) urea, each stand should receive 100,000 g/40,000 stands = 2.5 g per stand of urea as a top dressing. A heaped soda bottle-top of urea weighs about 5 g, so one heaped bottle-top should be shared among two stands.

Example 4: Using DAP or TSP as the source of P for a legume

To supply 20 kg P to a sole legume crop (e.g. cowpea), the amount of DAP required is as calculated in Example 1 for millet and in Example 3 for sorghum – that is about 100 kg (two standard 50 kg bags of fertilizer).

If using triple superphosphate, the amount of fertilizer to be applied is again as calculated for DAP because both fertilizers contain about 46% P_2O_5.

If the spacing for the legume is 50 cm by 20 cm, the number of holes is about 100,000 per hectare. For 100 kg (100,000 g) fertilizer, each hole should receive 100,000 g/100,000 holes = 1 g per hole. A heaped-soda bottle top of DAP or TSP weighs about 5 g, so one heaped bottle-top should be shared between five planting holes.
Example 5: Using composted cattle manure for millet

If the farmer applies 2 tonnes of composted cattle manure per hectare prior to sowing a millet crop that requires 40 kg N and 20 kg P, what nutrients will the manure supply and what, if any, balance of nutrients needs to be supplied from mineral fertilizer?

The cattle manure contains about 1.5% N and 1.2% P, so 2 tonnes (2000 kg) contains 2000 kg x (1.5/100) = 30 kg N and 2000 kg x (1.2/100) = 24 kg P.

But the nutrients in the composted manure may not all be immediately available. Assuming that only 50% of nutrients in compost are available to plants in the first season, then the amount of fertilizer that should be applied to meet the nutrient shortfall is 40 – (30 x 50/100) = 40 – 15 = 25 kg for N and 20 – (24 x 50/100) = 20 – 12 = 8 kg for P.

To convert the amount of P to the amount of P$_2$O$_5$, 8 x (100/43.6) = 18.3 kg P$_2$O$_5$.

If supplying P from TSP, apply (18 x (100/46)) = 39.1 kg of TSP.

The 25 kg of N can be applied as a top dressing. If using urea (which contains 46% N), apply 25 x 100/46 = 54 kg, which is about one 50 kg bag of fertilizer.

Soil fertility and residue management

For each one tonne of sorghum grain harvested, the total amount of nutrients taken up by the crop is 29.8 kg N, 8.3 kg P and 37.2 kg K (Table 10).

Assuming 50% of the fertilizer is taken up by the crop, to replace these nutrients would need 29.8 x 2 = 59.6 N and 8.3 x 2 = 16.6 kg P per tonne of grain. So, if the recommendation made earlier is followed (60 kg N and 40 kg P for sorghum), and the crop yields more than 1 tonne, then it is likely that the soil is being depleted for N.
For example: if the yield is 2 tonnes of sorghum grain per hectare, the amount of nutrients taken up by the crop is 29.8 kg N x 2 = 59.6 kg N. To supply 59.6 kg N per hectare, assuming 50% is taken up by the crop, requires 59.6 kg N x 2 = 119.2 kg N per hectare. The maximum amount of N recommended for sorghum is 60 kg N per hectare. In this example about 60 kg of N is being ‘mined’ from the soil each harvest.

However, if all the stover is returned to the field, then at least half of the N and P, and most of the K taken up by the plants is returned to the soil. These calculations are based on the assumption that for every 1 tonne of grain harvested, about 2.5 tonnes of stover is produced.

Table 10: Estimated amounts of N, P and K (in kg) taken up a crop yielding 1 tonne of grain

<table>
<thead>
<tr>
<th></th>
<th>Nitrogen (N)</th>
<th>Phosphorus (P)</th>
<th>Potassium (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grain</td>
<td>14.5</td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td>Stover</td>
<td>15.1</td>
<td>4.3</td>
<td>33.2</td>
</tr>
<tr>
<td>Total</td>
<td>29.8</td>
<td>8.3</td>
<td>37.2</td>
</tr>
</tbody>
</table>

Benefits of agroforestry

One way of enhancing plant nutrition is to incorporate agroforestry (trees and shrubs) in the cropping system. Inter-planting trees and shrubs among the annual crops also brings benefits due to better soil and water conservation.

Agroforestry practices suitable for sorghum and millet cropping systems include:

- Planting of legume crops, such as pigeon peas (*Cajanus cajan*) and *Dolichos* in strips (alley cropping) around or within the field in the sorghum growing area. Their positions can be rotated from season to season. Guard against shading the main crops. These are most appropriate in wetter areas, 800–900 mm per year.
• Growing perennial tree legumes such as:
 • Faidherbia albida
 • Acacia species
 • Parkia biglobosa
 • Moringa (although it is not a leguminous tree).

Apart from improved soil and water conservation, agroforestry also provides other benefits, such as:

• Improving fallow (e.g. N-fixing trees and shrubs provide nitrogen-rich mulch).
• Providing fodder for livestock, whose droppings and urine are then returned to the field.
• Serving as wind breaks to control soil erosion and lodging (falling over) of crops.
• Stabilizing the soil with their deep roots, preventing erosion on slopes.
• Serving as live fences to protect crops from grazing animals.
• Providing fuel wood, fruits, leafy green vegetables and grains for household consumption or sale.

Weed control
Weed control is essential in sorghum and millet crops if high yields are to be achieved. After emergence, early growth of sorghum and millet is slow; weeds should be controlled, especially when the crops are young, to reduce competition.

Weeding should depend on presence of weeds. The first weeding can be at two weeks after planting and the second weeding at five to six weeks after planting.

Weeding is more easily done if crops are planted in rows.

On shallow soils, there is the need to earth-up soil around plants (e.g. to form mounds) to promote root growth. This is so that
plants are better able to take up nutrients and water, and have good support. The crops are usually planted on flat ground, and earthing-up to form mounds can be done at the last weeding to bury weeds and conserve moisture. During earthing-up, weeds can be covered with soil to encourage rotting.

For legumes, or cereal-legume intercrops, the frequency of weeding depends on the type of legume planted. For example, creeping types of cowpea can cover the ground and suppress growth of weeds.

One major weed problem in the sorghum and millet cropping system is the prevalence of the broad-leaf parasitic weed *Striga*. Both *Striga hermonthica* and *Striga gesneroides* are present, the former attacking cereals and the latter legumes.

Control measures for *Striga* include:

- Planting varieties tolerant of *Striga*. If unsure of varieties to use, consult local seed suppliers.
- Uprooting *Striga* plants before they flower.
- Planting legumes and cotton in rotation with sorghum and millet, or intercropping with legumes. The legumes and cotton stimulate the *Striga* seeds to germinate but they cannot attach to the roots of these non-host (trap) crops. Two years of continuous planting of non-host crops such as these can drastically deplete the *Striga* seed bank in heavily infested fields.
- Transplanting. Transplanted sorghum seedlings do not release the chemical that germinating sorghum seeds release and which stimulates *Striga* seed to germinate.
- Soaking seed in carefully chosen herbicides which are not harmful to the seed before planting, but expert advice should be sought before doing this to ensure a suitable herbicide is used.
• Using herbicides to control *Striga* especially in sole crops of sorghum and millet. However, if legumes or other broad-leaved crops are also present as intercrops, herbicides that control *Striga* may also damage these crops. Again, expert advice should be sought to ensure a suitable herbicide is used.

• Improve soil fertility. The impact of *Striga* on crops is less on fertile soils. This is mainly due to the shading of the *Striga* plant by the more vigorously growing sorghum or millet crop, which will have more profuse tillering (multiple stems per plant) and a higher population density of the crop. The *Striga* eventually dies because it cannot compete with the vigorously growing and taller cereal.

Harvest and storage

Machine harvest of sorghum and millet is not common in African cropping systems. Almost all harvesting is done using cutlasses.

To harvest and store sorghum and millet:

• Harvesting should be done when the heads are dry.

• Cut plants just above the soil, leaving the roots and about 5-7 cm of the stalk intact. The roots and part of plant left in the soil will hold the soil and help prevent erosion.

• When cutting the plants at harvest, do not allow the heads (panicles) to touch the ground. This is to prevent them from getting contaminated with tiny *Striga* seeds that may be present. This is especially important if some of the harvested grains will be used as next season’s seed.

• Harvested heads should be dried on clean hard-paved surfaces or on tarpaulins to prevent contamination from sand, stones and weed seeds. The area should be kept clean, for example by preventing animals from urinating and defecating on the produce. Under hot sun, drying can take about four days. Through experience, farmers can tell if grain is dry enough for storage by biting (dry grain cracks on biting).
• Depending on the practices of the household, the grains could either be threshed and winnowed before storage, or can be stored on the panicles (heads) un-threshed in bags.

• The dominant practice is to store the grains on the heads, especially when they are mainly for household consumption. This approach appears to have some advantages, including:
 • reducing pest attack on grains
 • rationing use of harvested grain; because it takes time to thresh before cooking this discourages household use.

If some of the grain will be used as seed:

• Large heads of the desired variety should be selected which are free from disease.

• The sorghum or millet heads should be carefully dried before storage.

• Selected heads can be hung from the rafters above fireplaces in the kitchen or a room where smoke from fires dries it, which will help to keep it free from pests.

For cowpea:

• Indeterminate cowpea is harvested over a long period.

• If possible stover should be left in the field as mulch to be incorporated during ploughing. Alternatively the stover can be removed and used as fodder, in which case the manure should, if possible, be returned to the field.

• Wet grains do not store well. Grains should be dried well and stored in sealed, double bags (storage sacks with inner bag made of polythene) or the PICS bags which have been developed for this purpose. These air-tight bags prevent weevil damage (see Box 3).

• Wood ash can also be used to control insect damage. The ash is sieved to remove large particles, then mixed with cowpea in equal proportions.
Box 3: Purdue Improved Cowpea Storage (PICS) bags

The PICS is a triple-layer plastic bag that can be used to store grain under air-tight conditions. One polyethylene bag is fitted inside another, and then the two bags are placed inside a sack composed of woven polypropylene. Grain is placed inside the innermost bag, the bag is then tied tightly, then the middle bag is tied, and finally the outermost bag is tied.

The inner bags reduce the movement of air across the wall of the bag. If the grain is infested by insects before storage, the insects soon die from lack of oxygen. Insects cannot move into bags to attack grain that is stored. A major advantage is that there is no need to coat grain with insecticides before storage using this system.

To prevent the transmission of pest and diseases from the previously harvested crop, storage structures (e.g. granaries) should be cleaned and disinfected before the new harvest is stored. If storing the grain in sacks that have been used before, they should also be disinfected (see below) before re-use.

A cost-effective way of disinfecting small amounts of grains and old sacks before putting in grain, is solarisation. To do this:

• Spread the dried grains or sacks on large black polythene sheets in the hot sun. Grains should be thinly spread (2–3 cm depth), ideally in a single layer.

• Cover with a transparent polythene sheets held firmly in place by stones or other heavy objects to prevent the wind from blowing them off. (Note: If moisture builds up on the underside of the transparent sheets; the grain is not dry enough for storage and should be dried further before storage).

• The grain (or sacks) should be left out in the sun for at least 5 hours. Grain can then be placed in insect free containers. Grain should be allowed to cool before storing.
The black polythene sheets absorb the heat from the sun while the transparent sheet acts like a greenhouse, trapping the heat. In this way temperatures well above 50 °C can be reached between the two sheets. The heat kills eggs, larvae, pupae and adults of insect pests, and also kills most of the pathogens in the grain mass or sacks.

Caution: Grains to be saved as seed should not be dried/disinfected using solarisation. There is a very high risk of losing viability due to the high temperatures.

Management of residues

- Sorghum/millet – after harvesting, stalks should be spread thinly on ground and dried to kill stem borers.
- Crop residues can be taken and fed to animals: ideally the manure should be returned to the field.
- Cereal stalks can also be used for livestock bedding.
- Sometimes the cereal stalks are used as building materials (e.g. to make fences or cages for chickens, see Photo 8).
- Crop residues can also be left in the field as a mulch and source of organic matter.

Photo 8 : Sorghum stalks storage and uses

(A) Stover stored for later use (photo: CABI)
(B) Sorghum stover used to make chicken cage (photo: CABI)
Key checks

- Apply the right fertilizer product, at the right rate, at the right time, in the right place, in the context of ISFM.

- Apply P fertilizers and organic inputs at planting and top dress with N before panicle initiation. Apply manure at 5 tonnes per hectare per two years. Use soil amendments like lime and rock phosphate if soil acidity is a problem and gypsum if alkaline.

- Apply fertilizer in a band or spot close to plants, instead of broadcasting, to improve efficiency of fertilizer use.

- Apply a maximum of 60 kg N and 20 kg P per hectare to sorghum and a maximum of 40 kg of N and 20 kg of P per hectare to millet.

- If possible, return stover to the field to reduce nutrient loss – at least half of the N and P, and most of the K taken up by the plants is retained in stover.

- Include agroforestry (trees and shrubs) in the cropping system to improve soil and water conservation.

- Control weeds especially when the crops are young. The first weeding can be at two weeks after planting and the second weeding at five to six weeks after planting.

- Harvest when heads are dry. Cut plants 5–7 cm from ground, do not let heads touch the soil, dry heads in sun on clean surfaces, thresh and store grain, or store heads before threshing.

- If saving seed from crop, select large disease free heads, dry and store.

- For legumes, harvest when pods are dry, dry pods further in sun, thresh and store grain.

- Dry cereal and legume grain properly before storage to control insect pest attack. Legumes can be stored in airtight containers.
5. What can go wrong?

Pests and diseases
If not controlled, pests and diseases can cause large reductions in yields.

Pests
The main pests that can damage the crop before and after harvesting are shown in Tables 11 and 12. Insect pests can be controlled using integrated pest management practices. If using chemicals to control pests, handle the chemicals safely (see guidelines on safe use of agricultural chemicals on page 57). Some of the important insect pests are shown in Photos 9 and 10.

Table 11: Examples of insect pests that damage sorghum and millet, and preventive and control measures

<table>
<thead>
<tr>
<th>Insect</th>
<th>Damage</th>
<th>Prevention and control measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stem borer</td>
<td>• Larvae tunnel through the stem whilst feeding thus causing stem breakage, lodging (stem falls over), malformation of the grain and direct damage to the ears.</td>
<td>• Ploughing in of stover to reduce carrying over of insects from one crop to the next.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Roguing of volunteer plants between cropping seasons.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Planting during periods when the pest is less active.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Planting early maturing varieties.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Use pesticide if at least 10% of the plants are infested.</td>
</tr>
<tr>
<td>Sorghum shoot fly</td>
<td>• The larvae feed on the growing point of the shoot of the seedling.</td>
<td>• Planting at the beginning of the rains instead of later.</td>
</tr>
<tr>
<td></td>
<td>• The growing point can die, resulting in tillering in many cultivars – these tillers can also be attacked.</td>
<td>• Establishing high plant populations.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Establishing crop by transplanting seedlings from nursery instead of sowing seed directly in field.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Providing good nutrition in the nursery or at planting so plants are strong and healthy, and better able to withstand attack.</td>
</tr>
<tr>
<td>Spittlebug</td>
<td>• White foam on leaves – the young spittlebugs use this for protection.</td>
<td>• In most cases, infested plants recover from damage and natural enemies are active in controlling these pests so that no intervention is needed.</td>
</tr>
<tr>
<td></td>
<td>• Yellow patches on leaves.</td>
<td>• Planting at the beginning of the rains instead of later.</td>
</tr>
<tr>
<td></td>
<td>• If infestation is severe, leaves or young plants can die.</td>
<td>• Growing seeds in a nursery. Seedlings in nursery can be better protected from the dry spells. Also, transplanted seedlings are less susceptible to insect damage.</td>
</tr>
</tbody>
</table>
Table 11: continued

<table>
<thead>
<tr>
<th>Insect</th>
<th>Damage</th>
<th>Prevention and control measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weevil</td>
<td>• Feed on grain.</td>
<td>• Dry grain on surface that is free from the pest.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Dry grain properly before storage. Test: properly dried grains crack when bitten.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Store grain in air-tight containers.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Store grain in pest-free stores.</td>
</tr>
<tr>
<td>Flour beetle</td>
<td>• Eats flour and deposits eggs on floor.</td>
<td>• Ensure mill is free from pest before milling grain to avoid contamination.</td>
</tr>
<tr>
<td></td>
<td>• Eggs are not easily seen but the adults may be seen in the flour or nearby.</td>
<td>• Thresh on surface that is free from the pest.</td>
</tr>
<tr>
<td>Grain moth</td>
<td>• No visible symptoms because larva feeds inside grains.</td>
<td>• Dry grain on surface that is free from the pest.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Dry grain properly before storage.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Store grain in air-tight containers.</td>
</tr>
<tr>
<td>Birds</td>
<td>• Eat grain in the field</td>
<td>• Harvest when crop is ready – do not let mature crop remain in field.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Scare birds away using reflective tapes, noisy tins and other methods.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Mix both erect headed varieties with the drooping headed ones. When the birds flock and land on the drooping ones, as they lose their balance they fly off also frighten those perched on the erect ones.</td>
</tr>
</tbody>
</table>

Table 12: Examples of insect pests that damage legumes

<table>
<thead>
<tr>
<th>Insect</th>
<th>Damage</th>
<th>Prevention and control measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thrips</td>
<td>• Leaves abnormally shaped; flowers fall.</td>
<td>• Intercrop with non-legume crops, e.g. sorghum.</td>
</tr>
<tr>
<td></td>
<td>• Serious at flowering stage, but not at podding.</td>
<td>• Plant at onset of rains instead of later.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Spray with insecticides (e.g. cypermethrin, dimethoate) when infestation is severe.</td>
</tr>
<tr>
<td>Aphids</td>
<td>• Found on underside of leaves, stems; leaves curl, plants stunted and may die, excrete honeydew which encourages growth of black sooty mold on plants, spread viral diseases.</td>
<td>• Plant at on-set of rains</td>
</tr>
<tr>
<td></td>
<td>• Aphids are more serious during dry spells.</td>
<td>• Apply insecticides (e.g. pirimicarb) if infestation/damage is serious and crop is young and still forming new leaves.</td>
</tr>
<tr>
<td>Maruca pod borer</td>
<td>• Flowers wilt and drop, pods and seeds damaged.</td>
<td>• Plant crops at on-set of rains.</td>
</tr>
<tr>
<td></td>
<td>• Form webs that join together flowers, pod, and leaves.</td>
<td>• Intercrop with non-legume crops.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Spray with insecticides (e.g. cypermethrin, dimethoate) when infestation is severe.</td>
</tr>
</tbody>
</table>
Table 12: Continued

<table>
<thead>
<tr>
<th>Insect</th>
<th>Damage</th>
<th>Prevention and control measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beetles</td>
<td>• Adults damage leaves, larva cause damage to roots causing patches of yellow plants that are stunted, can dry up and have empty pods.</td>
<td>• Till soil after harvest to expose beetles that are in the soil to the sun.</td>
</tr>
<tr>
<td></td>
<td>• Store grain in air-tight containers.</td>
<td>• Rotate legumes with non-legume crops.</td>
</tr>
<tr>
<td>Spiny brown bug</td>
<td>• Depressions on pods and seed coats.</td>
<td>• Intercrop beans with non-legume crops like maize.</td>
</tr>
<tr>
<td></td>
<td>• Seeds rot or shrivel.</td>
<td>• Apply insecticide (e.g. cypermethrin) if infestation is serious.</td>
</tr>
<tr>
<td>Bruchid</td>
<td>• Holes in grains seeds</td>
<td>• Store grain in airtight, clean, pest-free containers, e.g. use PICs bags (see Box 3 on page 41).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Coat seeds with edible oil, ash or insecticides such as aspirimiphos-methyl + permethrin, fentrothion + fenvalerat.</td>
</tr>
</tbody>
</table>

Photo 9: Pests of sorghum and millet (A) Stalk borer attack on maize (photo: CABI) (B) Spittle bug (photo: CABI)

Diseases

On sorghum, fungal diseases that affect foliage include grey leaf spot, rust, blight and anthracnose. Head smut pythium causes root rot.

On millet the main fungal disease is mildew (Table 13).

On legumes, diseases include charcoal rot, aphid-borne mosaic, rust, powdery mildew in cowpea and rosette disease, leaf spots in groundnut (Table 14).

See Photos 11 and 12 for some of the important diseases.
Photo 10: Pests of legumes (A) Bug on cowpea (photo: CABI) (B) Spiny brown bug (photo: CABI) (C) Stink bug (photo: CABI) (D) Grasshopper on cowpea (photo: CABI) (E) Cowpea pods with holes (photo: CABI) (F) Damaged cowpea seeds (photo: CABI) (G) Good seeds (photo: CABI).
<table>
<thead>
<tr>
<th>Crop</th>
<th>Disease</th>
<th>Symptoms</th>
<th>Control</th>
</tr>
</thead>
</table>
| Sorghum | Grey leaf spot| • Small spots enlarge to patches of about 5–15 mm long and 2–5 mm wide on leaves.
• Lesions are dark-red with a light brown centre.
• The patches may have a grey coating. | • Plant tolerant/resistant varieties if available. |
| | Rust | • Small swollen spots with red-brown brown powder on leaves and sheaths.
• More common on upper than lower leaf surface. | • Plant tolerant/resistant varieties if available.
• Planting at on-set of rains.
• Destroy infected plants.
• Use seed from a crop that was not infected by rust. |
| | Zonate leaf spot| • Red-brown spots sometimes surrounded by a pale-green halo on leaves.
• Spots increase in size and elongate parallel to the veins.
• Small spots have a light-brown centre surrounded by a reddish border and large spots are semi-circular may have light and dark brown bands.
• Infected seeds can be red-brown. | • Rotate sorghum with non-cereal crops such as legumes. |
| | Leaf blight | • Long patches with dark brown margins and light brown centres.
• Under humid conditions the lesions may have a grey coating | • Planting resistant varieties.
• Intercropping with a legume. |
| | Anthracnose | • Small round spots, become patches with light brown centre.
• Black spots may be present at the centre of the patch. | • Plant resistant varieties.
• If harvested crop was infected, remove residues from the field immediately after harvesting. The residues can be fed to livestock away from the field. |
| | Head smut | • Large, dark-brown galls (abnormal growths) emerge in place of grains.
• Galls covered with a white membrane which breaks open to expose a black powder.
• Plants become infected at seedling stage but infection not seen before the sorghum head emerges.
• May affect part of or the whole head. | • Growing resistant varieties if available. |
<p>| Millet | Downy mildew | • White growth appears on underside of leaf, leaves become yellow or white, entire leaf may be discoloured or leaf may have discoloured streaks or stripes. | • Plant seed from a crop that was not infected by the disease. |</p>
<table>
<thead>
<tr>
<th>Crop</th>
<th>Disease</th>
<th>Symptoms</th>
<th>Control</th>
</tr>
</thead>
</table>
| Cowpea | Charcoal rot (ashy stem blight) | • In seedlings, black sunken spots on the stem close to the soil, death. In older seedlings yellowing of leaves, leaves fall, death of plants. In old plants, black dust on stem, pods and seeds. | • Plant seed from a crop that was not infected
• Remove infected plants and burn
• Rotate cowpea with non-legume crops
• Plant resistant varieties |
| | Mosaic | • Light green or yellow and dark green patterns on leaves, leaves crease and roll, small pods. | • Plant seed from a disease free crop
• Plant resistant varieties
• Plant at on-set of rains instead of later
• Remove infected plants |
| | Rust | • Small yellow raised spots on top and underside of leaves, petioles and pods; leaf spots become large, powdery reddish-brown, yellow and leaves die. | • Intercrop with non-legume crops |
| | Powdery mildew | • Scattered white patches, turn grey.
• Attacks all plant parts above the ground.
• Leaves can die and fall-off. | • Plant resistant varieties if available. |
| Groundnut | Rosette disease | • Plants stunted, leaves produced are progressively smaller, pale yellow and often curled. | • Plant early in season.
• Remove infected and volunteer plants.
• Control aphids as they spread the virus which causes the disease. |
| Early leaf spot and late leaf spot | • In early leaf spot , dark brown spots with yellow halos on top leaf surface, spots are brown on underside of leaf.
• In late leaf spot, black spots on underside of leaves. | • Intercrop /rotate with non-legume.
• Plant resistant cultivars.
• Remove volunteer groundnut plants.
• Spray with fungicides (e.g. mancozeb, chlorothalonil, carbendazin). |

Caution: If using chemicals to control pests and diseases, follow the manufacturers’ guidelines on safe use of chemicals. See also Look-up Table 3 on page 57 for general safety guidelines.
Photo 11: Diseases of sorghum: Head smut (photo: CABI)

Photo 12: Diseases of legumes (A) Cowpea pod with mycelium (photo: CABI) (B) Brown spot on groundnut (photo: CABI)
6. Economics of sorghum/millet-legume cropping systems

How to calculate whether use of fertilizer is financially worthwhile.

Example 1

Below are worked examples of how to calculate the financial benefit using some estimates of prices for grain, stover and fertilizer. When extension workers and farmers repeat these calculations they should of course use prevailing local prices.

In Example 3 on page 33, two bags of DAP and two bags of urea were used per hectare of sorghum to give a grain yield of 2000 kg per hectare and a stover yield of 4000 kg per hectare. The yield would have been just 600 kg per hectare of grains and 1100 kg per hectare of stover without fertilizer application. But how beneficial is using fertilizer in this example?

Without fertiliser:

Value of grains: 600 kg @ $0.30 per kg = $180
Value of stover: 1100 kg @ $0.01 per kg = $11

Total value of sorghum harvest per hectare = $191

With fertiliser:

Value of grains: 2000 kg @ $0.30 per kg = $600
Value of stover: 4000 kg @ $0.01 per kg = $40

Total value of sorghum harvest per hectare= $640

Cost of fertilizer:

2 bags of DAP @ $30 each = $60
2 bags of urea @ $30 each = $60

Total cost of fertilizer per hectare = $120
To calculate if it was profitable to use fertilizer:

\[
(\text{total value of sorghum with fertilizer} - \text{total value of sorghum without fertilizer}) - \text{total cost of fertilizer} = (\$640 - \$191) - \$120 = \$449 - \$120 = \$329 \text{ per hectare.}
\]

So, here the farmer recovered the $120 invested in fertilizer and made an additional $329 per hectare by using fertilizer.

It may also be worthwhile to know how much money is made for each dollar invested. This can be done by calculating the value-cost ratio (VCR). For an investment to be worthwhile a VCR of 2 or more is required; a VCR of 1 would be the breakeven point and any value less than 1 would represent a loss.

\[
\text{VCR} = \frac{\text{total value of sorghum with fertiliser} - \text{total value of sorghum without fertilizer}}{\text{total cost of fertiliser}}
\]

\[
= \frac{\$640 - \$191}{\$120} = \frac{\$329}{\$120} = 2.74
\]

This means that for each $1 invested in fertilizer the farmer got a return of $2.74. The VCR is greater than 2. So, in this case the investment in two bags of DAP and two bags of urea for the sorghum crop was worthwhile.

Example 2

How beneficial would it be to apply 5 bags of NPK (17:17:17) on a hectare of millet, as in Example 1 on page 37?

Assuming grain yields increase from 350 kg per hectare without fertilizer to 850 kg per hectare when the fertilizer was applied, stover yields increase from 1000 to 2000 kg per hectare and prices are $0.30 per kg for grain, $0.01 per kg for stover and $30 per 50 kg bag of fertilizer.
Without fertiliser:
Value of grains: 350 kg @ $0.30 per kg = $105
Value of stover: 1000 kg @ $0.01 per kg = $10
Total value of millet harvest per hectare = $115

With fertiliser:
Value of grains: 850 kg @ $0.30 per kg = $255
Value stover: 2000 kg @ $0.01 per kg = $20
Total value of millet harvest per hectare = $275

Cost of fertilizer:
5 bags of NPK (17:17:17) @ $30 each = $150

To calculate if it was profitable to use fertilizer:

\[(\text{total value of millet with fertilizer} - \text{total value of millet without fertilizer}) - \text{total cost of fertilizer} = ($275 - $115) - $150 = $10\]

So, the farmer recovered the $150 invested in fertilizer, but made only an additional $10 per hectare from using fertilizer. In this case, investing in fertilizer would not have been very attractive to farmers.

\[VCR = \frac{\text{total value of sorghum with fertiliser} - \text{total value of sorghum without fertilizer}}{\text{total cost of fertiliser}}\]

\[= ($275 - $115)/$150 = $160/$150 = 1.07\]

This means that each $1 invested in the fertilizer used on the millet crop yielded an additional $0.07. In this case, the farmer would most likely prefer to invest the money in other inputs or enterprises.
The benefits of fertiliser application in the system can be improved by using combinations of best practices discussed in this guide. For example, using seed with good yield potential and that can withstand disease pressure, use of farmyard manure and compost in combination with fertilizer, seed priming, and micro-dosing (see Box 2 for more information on microdosing) to improve the efficiency of fertilizer use and controlling weeds to reduce competition for nutrients.
7. Look-up tables

Look-up Table 1. Nutrient and water content of manures and residues commonly available in sub-Saharan Africa.

<table>
<thead>
<tr>
<th>Material</th>
<th>N</th>
<th>P (kg/t material)</th>
<th>K (kg/t material)</th>
<th>Ca (kg/t material)</th>
<th>Water content (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human faeces</td>
<td>10</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cattle faeces</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pig faeces</td>
<td>5</td>
<td>2</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fresh cattle manure</td>
<td>4–6</td>
<td>1–2</td>
<td>4–6</td>
<td>2–4</td>
<td>60</td>
</tr>
<tr>
<td>Composted cattle manure</td>
<td>15</td>
<td>12</td>
<td>21</td>
<td>20</td>
<td>35</td>
</tr>
<tr>
<td>Farmyard manure</td>
<td>10</td>
<td>8</td>
<td>12</td>
<td>8</td>
<td>50</td>
</tr>
<tr>
<td>Goat manure</td>
<td>8</td>
<td>7</td>
<td>15</td>
<td>8</td>
<td>50</td>
</tr>
<tr>
<td>Sheep manure</td>
<td>10</td>
<td>7</td>
<td>15</td>
<td>17</td>
<td>80</td>
</tr>
<tr>
<td>Pig manure</td>
<td>7–10</td>
<td>2–3</td>
<td>5–7</td>
<td>12</td>
<td>80</td>
</tr>
<tr>
<td>Poultry manure</td>
<td>14–16</td>
<td>2.5–8</td>
<td>7–8</td>
<td>23</td>
<td>55</td>
</tr>
<tr>
<td>Garbage compost</td>
<td>6</td>
<td>2</td>
<td>23</td>
<td>11</td>
<td>40</td>
</tr>
<tr>
<td>Sewage sludge</td>
<td>16</td>
<td>8</td>
<td>2</td>
<td>16</td>
<td>50</td>
</tr>
<tr>
<td>Sugarcane filter cake</td>
<td>3</td>
<td>2</td>
<td>0.6</td>
<td>5</td>
<td>75–80</td>
</tr>
<tr>
<td>Castor bean cake</td>
<td>45</td>
<td>7</td>
<td>11</td>
<td>18</td>
<td>10</td>
</tr>
</tbody>
</table>
Look-up Table 2. Nutrient conversion factors.

<table>
<thead>
<tr>
<th>From</th>
<th>Multiply by</th>
<th>To get/From</th>
<th>Multiply by</th>
<th>To get</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO$_3$</td>
<td>0.226</td>
<td>N</td>
<td>4.426</td>
<td>NO$_3$</td>
</tr>
<tr>
<td>NH$_3$</td>
<td>0.823</td>
<td>N</td>
<td>1.216</td>
<td>NH$_3$</td>
</tr>
<tr>
<td>NH$_4$</td>
<td>0.777</td>
<td>N</td>
<td>1.288</td>
<td>NH$_4$</td>
</tr>
<tr>
<td>P$_2$O$_5$</td>
<td>0.436</td>
<td>P</td>
<td>2.292</td>
<td>P$_2$O$_5$</td>
</tr>
<tr>
<td>K$_2$O</td>
<td>0.83</td>
<td>K</td>
<td>1.205</td>
<td>K$_2$O</td>
</tr>
<tr>
<td>SO$_2$</td>
<td>0.500</td>
<td>S</td>
<td>1.998</td>
<td>SO$_2$</td>
</tr>
<tr>
<td>SO$_4$</td>
<td>0.334</td>
<td>S</td>
<td>2.996</td>
<td>SO$_4$</td>
</tr>
<tr>
<td>SiO$_2$</td>
<td>0.468</td>
<td>Si</td>
<td>2.139</td>
<td>SiO$_2$</td>
</tr>
<tr>
<td>MgO</td>
<td>0.603</td>
<td>Mg</td>
<td>1.658</td>
<td>MgO</td>
</tr>
<tr>
<td>CaO</td>
<td>0.715</td>
<td>Ca</td>
<td>1.399</td>
<td>CaO</td>
</tr>
<tr>
<td>CaCO$_3$</td>
<td>0.560</td>
<td>CaO</td>
<td>1.785</td>
<td>CaCO$_3$</td>
</tr>
</tbody>
</table>
Look-up Table 3. Guidelines for safe use of agricultural chemicals

<table>
<thead>
<tr>
<th>1. Place of purchase</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Purchase chemicals from licensed/registered dealers</td>
</tr>
<tr>
<td>• Pesticide should be accompanied by an information leaflet on guidelines on proper use and handling of chemical</td>
</tr>
<tr>
<td>• Do not use banned or prohibited chemicals. If unsure, consult your local agricultural agent, or buyers of your produce</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2. Choice of chemical</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Use the correct chemical for crop and pest. Follow information leaflet on pest and crop</td>
</tr>
<tr>
<td>• Use recommended chemicals that are accepted in the market. Confirm with your local extension agent or buyer of coffee</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3. Correct timing</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Follow guidelines. Check how many days you must allow between spraying and harvesting</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. Correct quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Apply the recommended quantities</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5. Correct mixing</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Follow guidelines on compatibilities</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. Correct application</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Follow guidelines on correct application method</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7. Correct handling</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Wear protective clothing covering body, head and face to prevent contact with skin, eyes, or inhaling. Do not face into the wind when spraying.</td>
</tr>
<tr>
<td>• Keep materials for handling spillages ready for use if needed</td>
</tr>
<tr>
<td>• Wash off chemical that comes into contact with body with water and soap</td>
</tr>
<tr>
<td>• Wash your hands with soap and water before eating, smoking or going to the toilet</td>
</tr>
<tr>
<td>• Bathe and change clothes after spraying</td>
</tr>
<tr>
<td>• Wash containers used to mix and spray chemicals</td>
</tr>
<tr>
<td>• Visit doctor if sick after spraying. Provide doctor with name of chemical and the information leaflet for chemical to read.</td>
</tr>
</tbody>
</table>
8. Disposal of chemicals and containers

- Dispose excess diluted chemical as per manufactures’ guidelines
- Do not leave empty containers lying around
- Follow manufacturers’ instructions on disposal

9. Storage and storage period

- Store pesticides away from human and animal food, away from children, in locked place, with warning signs
- Keep chemicals in their original containers
- Storage for period recommended by manufacture. Do not use after expiry date

10. Records

- Keep records of chemicals used, when used, where used
Africa Soil Health Consortium – improving soil fertility, improving food production, improving livelihoods

Africa Soil Health Consortium (ASHC) works with initiatives in sub-Saharan Africa to encourage the uptake of integrated soil fertility management (ISFM) practices. It does this primarily by supporting the development of down to earth information and materials designed to improve understanding of ISFM approaches.

ASHC works through multidisciplinary teams including soil scientists and experts on cropping systems; communication specialists, technical writers and editors; economists; monitoring and evaluation and gender specialists. This approach is helping the ASHC to facilitate the production of innovative, practical information resources.

ASHC defines ISFM as: A set of soil fertility management practices that necessarily include the use of fertilizer, organic inputs and improved germplasm combined with the knowledge on how to adapt these practices to local conditions, aiming at optimizing agronomic use efficiency of the applied nutrients and improving crop productivity. All inputs need to be managed following sound agronomic and economic principles.

The Integrated Soil Fertility Management Cropping Systems Guide series is an output of the Africa Soil Health Consortium (ASHC), which is coordinated by CABI.